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6, Amélie VialetID
1,4*
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Abstract

As part of a long-term research project aiming at generating a biomechanical model of a fos-

sil human tongue from a carefully designed 3D Finite Element mesh of a living human ton-

gue, we present a computer-based method that optimally registers 3D CT images of the

head and neck of the living human into similar images of another primate. We quantitatively

evaluate the method on a baboon. The method generates a geometric deformation field

which is used to build up a 3D Finite Element mesh of the baboon tongue. In order to assess

the method’s ability to generate a realistic tongue from bony structure information alone, as

would be the case for fossil humans, its performance is evaluated and compared under two

conditions in which different anatomical information is available: (1) combined information

from soft-tissue and bony structures; (2) information from bony structures alone. An Uncer-

tainty Quantification method is used to evaluate the sensitivity of the transformation to two

crucial parameters, namely the resolution of the transformation grid and the weight of a

smoothness constraint applied to the transformation, and to determine the best possible

meshes. In both conditions the baboon tongue morphology is realistically predicted,

evidencing that bony structures alone provide enough relevant information to generate soft

tissue.

Author summary

The issue of the phylogenetic emergence of speech in humans is the focus of lively and

strong debates. It questions both cognitive and physical capacities of fossil hominins to

articulate speech. The ultimate goal of our research project “Origins of Speech” is the quan-

titative investigation of the physical aspects of the debate. We rely for that on the design

biomechanical models of fossil hominins’ vocal tracts and on the assessment of their

capacity to articulate distinctive sounds as is required for the emergence of spoken lan-

guage. Since fossil remains do not preserve soft tissue, the technical challenge is to be able
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to predict them, and in particular the tongue, from bony structures alone. In this paper we

present our method to reach this goal, which uses medical images of the head and neck to

register a reference biomechanical tongue model of a living human into a tongue model of

any other primate. We evaluate it quantitatively on the prediction of a Baboon tongue, for

whom we have accurate X-Ray scans of the skull and the vocal tract, by comparing the

tongue model predicted from bony structures alone with the model predicted from bony

and soft tissue structures and with the tongue segmented on the baboon X-Ray data. The

evaluation includes a mathematical evaluation, based on uncertainty quantification meth-

ods of the sensitivity of the predictions to the variations of crucial parameters used in the

optimal geometrical registration. The results are very encouraging for future application

to fossil hominins.

Introduction

The origin of the capacity for spoken language in humans is a debated question as much in

terms of the biological conditions necessary for its establishment as in terms of its emergence

during human evolution. Several hypotheses have been formulated. Some of them establish a

link between speech emergence, the transition from quadrupedalism to bipedalism, and the

preference for manual gestures, which opened a new space of freedom but also frames for the

use of the face and, then, of the mouth [1]. Alternatively some others consider this faculty as

resulting from a diverted use of the masticatory apparatus, which basically were dedicated to

swallowing but would also allow phonation and articulated speech by a phenomenon of exap-

tation [2, 3].

Concerning its emergence within human evolution, which is nearly 7 million years long

and within which many genera and species have been identified, the data available are often

insufficient to provide crucial insights into these debates. Fossils are by nature incomplete; the

phonatory apparatus is not preserved, since it is made of cartilages and soft tissue, which do

not fossilize; at the level of the oral cavity, the only remains of the tongue, which occupies most

of the space, are the traces of its connection to the mandible and, rarely, the fragile hyoïd bone

to which the tongue was connected.

In fossil hominins, the bones of the skull and mandible, when preserved thanks to the pro-

cess of fossilization, constitute the hollow structures of the speech production apparatus. The

observed anatomical arrangement on certain fossils suggests that in the first representatives of

the genus Homo (around 2.8 Ma) a capacity for speech articulation existed, as well as the sepa-

ration between the soft palate and the epiglottis (an arrangement that differs from that of great

apes, where the two elements are in contact, allowing them to breathe and swallow at the same

time). Moreover, at the endocranial level, although the general brain volume of such early

Homo is small (<600 cm3), language-specific arrangements are in place: individualized Broca’s

cap and a noticeable right-left asymmetry are present [4]. Does this prove though that such fos-

sil hominins did speak like today’s humans? It is not possible to answer this question, espe-

cially since it has recently been shown that some non-human primates have ranges of variation

in vocal tract shapes that are similar to those observed in Homo sapiens [5, 6] without having

developed the same type of language.

Archaeology is also called upon to prove the capacity for language in fossil hominins by

considering that language mastery is expressed in material productions. Indeed, language (as

practiced today by Homo sapiens) constitutes a means of access to abstraction, and it positions

humans in their distanced relationship to the world. This is the reason why hominines
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productions (e.g. stone tools, use of fire, habitat structuring, hunting activities) are interpreted

as tangible proofs of a language capacity (even rudimentary) [7]. The symbolic manifestations,

the oldest of which date back at least 500000 years and the most recent, such as the paintings

on the walls of caves, are spectacular, seem to attest to a cognitive level that corresponds to that

required by language [8].

Thus, both paleontology and archaeology have provided qualitative or phenomenological

observations that argue for the capacity of articulated speech in fossil hominins, but neither

has been able to provide measurable evidence in this direction. In this scientific context, our

long-term project aims at providing a quantitative evaluation of the suitability of the biological

characteristics of fossil hominins with the capacity of articulated speech. Our approach for fos-

sil hominins in three main steps: (i) predicting from the geometry of the skull, the mandible

and the vertebrae the morphology of the missing tongue, which is the organ at the core of

articulated speech, and of the missing soft tissue surrounding the tongue in the oropharyngeal

cavity; (ii) building a biomechanical model of the predicted fossil tongue and its surrounding

structures in the oral cavity (soft palate, pharyngeal walls, hyoïd bone, lips, and mandible)

including muscles that are responsible for their movements and shapings; (iii) evaluating with

the biomechanical model the maximal movement magnitudes of the tongue in the anterio-

posterior and the vertical dimensions, and, consequently, the range of variation of the vocal

tract shapes that could be produced in these fossil hominins.

This paper constitutes a first step towards the achievement of our global project. It presents

and assesses the methodology that we developed to predict tongue morphology from the avail-

able data of head and neck bony structures. This methodology extends on previous work [9]

and consists in morphing a human tongue mesh, built from head and neck medical images of

a reference living human, onto the anatomy of a target primate, using non-rigid registration

techniques. This is done through 3D non-rigid image registration between the CT images of

the reference living human subject and the CT images of the target primate. Bijar and col-

leagues [9] have validated a similar approach starting with the prediction of the tongue of

another living human. Here, we hypothesize that such a non-rigid registration methodology is

transferable into the context of tongue morphology prediction for fossil hominins, on the basis

of two main observations: the variations in structural arrangement of the tongue and sur-

rounding structures among mammals are relatively low [10], and are expected to be even

lower between living and extinct humans; the non-rigid registration method adopted by Bijar

and colleagues has shown fruitful results in other registration contexts with very large defor-

mation [11, 12].

In the context of our ultimate research objective on fossil tongues, which involves the

matching of head and neck morphologies that are much more different from each other than

those of two living humans, the evaluation of the realism of the predicted tongue morphology

is crucial. And this evaluation is a particularly complex issue, since the absence of soft tissue

fossilization prevents any precise comparison between the predicted and the real tongues. To

compensate for this absence, we propose in this article an evaluation of the method based on

the prediction of the tongue and soft tissue of a baboon’s oral cavity for which accurate 3D

CT images exist for the head and neck region, making possible a quantitative comparison of

prediction and data. We choose a baboon as target primate for two main reasons. First, a

baboon skull shape shows strong differences with Homo sapiens skull shapes, but remains in

the family of the skulls of the Catarrhini primates, to which hominins belong. This is a way to

maximally challenge our approach. Indeed, if our methodology proves capable of capturing

such strong skull shape dissimilarities, and to adequately predict the baboon’s tongue and its

surrounding soft tissue, we will consider that it should be able to reliably address the challenge

of predicting the tongue and surrounding soft tissue of a fossil hominin, whose morphology
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is less different. Second, CT images can be easily modified to simulate the absence of soft tis-

sue, through thresholding of voxel intensity levels, which will provide a context of evaluation

similar to that with fossil hominins, where only information of bony structures is available.

The estimation of the baboon’s tongue morphology from the corresponding skull data can

then be quantitatively evaluated through comparison to the ground truth tongue shape mea-

sured from the baboon’s CT exam. A specific focus concerns the uncertainty quantification of

the parameters used for the non-rigid registration method. Then, the extent to which the

baboon tongue shape can be reliably estimated with a registration based on bony structures

alone is investigated.

Materials and methods

Ethics statement

CT images of the reference living human were collected in 2001 from a volunteer under

informed consent. At the time, no ethical approval was required in France for this kind of

data, provided that the subject was a volunteer and the physicians had agreed to carry out the

acquisitions. These data have already been published in two articles in peer reviewed journals

[13, 14]. CT images of the baboon were acquired on cadaver at the CERIMED (agreement No.

D1305532); no ethical approval is required to use post mortem samples. This study was part of

a larger program for which procedures were approved by the ethical committee on animal

experimentation No. 14 (Project 68-19112012, CEEA-14 Marseille).

Materials

Materials include, on the one hand, CT images of the head and neck of a reference living

human subject and of a baboon subject, and, on the other hand, a Finite Element (FE) mesh

built from structural images of the reference living human subject, called henceforth reference
human tongue mesh.

Structural images of human and baboon subjects. The reference living human subject is

a male adult. The set of CT images is composed of 150 axial slices 1.3 mm thick (from the mid-

dle of the forehead to the lower extremity of C3), with a resolution of 0.49 mm × 0.49 mm

[13]. The baboon subject is an adult (22 years old) female Guinean baboon (papio papio) (fro-

zen cadaver preserved at the Primatology Station of the CNRS, France). The cadaver was

unfrozen for the CT imaging. The CT images were collected at the CERIMED (Marseille).

They consist of a set of 300 axial slices 0.625 mm thick, with a resolution of 512 × 512 pixels of

1 mm × 1 mm.

Upper surface of the baboon tongue. The upper surface of the tongue for the baboon

subject was delineated in the corresponding CT images for validation of the baboon tongue

mesh prediction. A total of 608 points were located at the interface between the upper edge of

tongue and the air inside the baboon oral cavity. These points were located in all sagittal slices

where this tongue-air interface was clearly visible, each point being separated from its in-slice

neighbors by a distance of 3 mm approximately. Fig 1 depicts the spatial distribution of these

points in a sagittal slice (Fig 1(c)) and in 3D space with respect to the baboon’s bony structures

(Fig 1(d)).

Paired anatomical landmarks. A total of 21 anatomical landmarks were paired in the ref-

erence human and in the baboon images on the basis of anatomically equivalent bony struc-

tures. These landmarks were chosen for their anatomical relevance and their ease of

identification in the 3D CT images. The landmarks, which correspond in their majority to the

conventional landmarks defined by anatomists on dry skulls, are listed in Table 1.
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In contrast to the points delineating the upper tongue surface described above, these ana-

tomical landmarks were used during registration to drive the optimization problem, and not

for validation. In the following, they will be denoted by Lh and Lb for the human reference

and baboon subjects, respectively. Figs 1(a) and 1(b) illustrate the spatial distribution of these

landmarks for the human and the baboon subjects, respectively [1].

Fig 1. 3D CT images, landmarks on bony structures and evaluation points of the upper tongue surface. Sagittal slices for the 3D CT images of

the reference human subject (a) and the baboon subject (b, c). Paired landmarks in both subjects are displayed on sagittal slices (a) and (b). The

points located at the upper surface of the baboon tongue are displayed in a sagittal slice (c) and in a 3D reconstruction of the skull, the mandible

and the vertebra (d).

https://doi.org/10.1371/journal.pcbi.1011808.g001

Table 1. Paired anatomical landmarks for the reference human and baboon subjects.

Landmark Position Conventional name

1 Cervical line of the lower incisor Infradental
2 Cervical line of the upper incisor Prosthion
3 Lower anterior extremity of the hard palate Opening of the incisive foramen in the

buccal cavity

4 Lower posterior extremity of the hard palate Staphylion
5 Lower extremity of the body of the hyoïd bone - - -

6 Upper extremity of the body of the hyoïd bone - - -

7 Lower mental spine - - -

8 Upper mental spine - - -

9 External occipital prominence Inion
10 Posterior border of the foramen magnum Opisthion
11 Anterior border of the foramen magnum Basion
12 Upper posterior extremity of the Atlas’ Anterior Arch

(C1)

- - -

13 and 17 Posterior/Anterior lower extremity of the Atlas’ Anterior

Arch (C1)

- - -

14 and 18 Posterior/Anterior upper extremity of C2’s Anterior

Arch

- - -

15 and 19 Posterior/Anterior lower extremity of C2’s Anterior

Arch

- - -

16 Between the two orbits Nasion
20 and 21 Orbits: most inferior right/left points (not visible on Fig

1)

Right and Left orbitale

All landmarks, except for landmarks 20 and 21, are placed on the mid-sagittal plane.

https://doi.org/10.1371/journal.pcbi.1011808.t001
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Reference finite element human tongue mesh. The reference 3D FE human tongue

mesh was designed on the basis of a male subject, for whom various structural images (CT-

scan, Magnetic Resonance images, X-ray scan) of the head and the oral cavity were available.

The tongue mesh was generated from the tongue surface extracted from these images, where

the reference subject was at rest, i.e. with the jaw slightly open (5 mm between the upper and

lower incisor) and the tongue determining a quasi uniform cross-sectional area of the vocal

tract from the glottis to the lips. We used Altair Hypermesh to generate a high quality tetrahe-

dron mesh comprising detailed internal structures (e.g. 15 oriented muscle components), nec-

essary for subsequent biomechanical simulations. The number of elements results from a

compromise between the mesh complexity, the quality of its elements and the geometrical

accuracy of the resulting tongue shape. As a result, the mesh contains 6039 nodes forming

29966 linear tetrahedral elements. Fig 2 depicts the FE mesh on the anatomy of the reference

human subject.

Predictions of the baboon tongue

General principles. Our objective in this work is to generate a FE tongue mesh of the

baboon subject by morphing the FE tongue mesh of the reference human subject via non-rigid

registration, while considering that only structural information from bony structures is avail-

able, as would be the case for fossil data. The accuracy of the obtained baboon tongue mesh is

evaluated by comparing it with the mesh obtained from a similar registration procedure but

using CT data including information on soft tissue. We consider this last mesh generation

method to be a reference in terms of realism, because it takes into account structural informa-

tion coming from both bony and soft tissue structures, and because previous work carried out

on tongue mesh morphing between humans subjects [9] has demonstrated that under these

conditions a reliable prediction of subject-specific tongue mesh can be obtained.

The mesh prediction involves a non-rigid registration problem based on two paired human

and baboon CT images: one containing both soft tissue and bony structures information, and

one containing information from bony structures alone, which is generated by artificially

removing soft tissue information from the original CT images. For the sake of brevity and clar-

ity, in the remaining sections we will refer to these two registration problems as soft-tissue-
based registration and bone-based registration, respectively.

An overview of the proposed methodology is presented in Fig 3. It starts by solving the soft-
tissue-based registration problem, with the aim of obtaining the best possible reference predic-

tion of the baboon FE tongue mesh. Then, we proceed to solve the bones-based registration

Fig 2. FE mesh and CT image of the reference human subject. (a) Mid-sagittal slice of the CT image with the tongue contours

from the FE tongue mesh superimposed. (b) 3D reconstruction of the skull from the CT image along with FE tongue mesh inside

the oral cavity. (c) Various views of the FE tongue mesh of the human reference subject.

https://doi.org/10.1371/journal.pcbi.1011808.g002
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problem. The accuracy of the FE tongue mesh predicted by the bones-based registration prob-

lem is evaluated by direct comparison to the prediction obtained from the soft-tissue-based
registration problem. Finally, the uncertainty of both results to key registration parameters is

quantified using a stochastic approach, as a measure of overall robustness of the image regis-

tration procedure.

Image pre-processing. Image pre-processing comprises a first step in which the CT

images are made symmetrical with respect to the mid-sagittal plane of the head. Importantly,

this first stage is not a requirement for our registration method to work efficiently. It is

included in order to properly simulate the conditions in which we plan to use the method to

predict human fossils’ tongues. Fossil skull and mandible remains are generally incomplete,

with missing pieces of bones on either side of the mid-sagittal plane. In such a case, we recon-

stitute a complete fossil skull-mandible set by taking into account all parts available from each

side, and by symmetrizing them with respect to the mid-sagittal plane in order to reconstruct

the most complete possible set. This means that we will be working de facto with symmetrical

data sets.

In a second stage, the head and neck anatomical structures, including both soft tissue and

bony structures, are segmented from the symmetrical images. These segmentations enable the

estimation of image similarity during registration to be limited to regions of interest. This

improves overall registration performance while avoiding unnecessary calculations. In a third

and last step, only the bony structures are kept in the images in order to simulate the condi-

tions in which the prediction of fossil hominin tongues will operate.

Symmetrical images. The mid-sagittal plane of the head is defined for each subject by

means of three manually selected points, which describe a plane and its normal vector in 3D

space with respect to which the symmetrization preserves as much as possible the global vol-

ume of the skull and the mandible. Thus, these points are not chosen for their anatomical sig-

nificance but rather for their efficacy in the symmetrization process. Furthermore, this process

enables to compensate for a possible tilt of the CT images with respect to the vertical plane.

Fig 3. Overview of proposed methodology. Non-rigid image registration is used to estimate the tongue of the baboon subject

from both the original 3D CT images and the images with bones information only. Uncertainty quantification allows the choice of

registration parameters that are robust with respect to the input registration parameters.

https://doi.org/10.1371/journal.pcbi.1011808.g003
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Once these points are defined, the 3D CT images are translated and rotated, in such a way that

(i) the thus defined mid-sagittal plane of their volume becomes aligned with the vertical plane

of the cartesian working space, and (ii) the center of their volume corresponds to the origin of

the working space. The thus defined mid-sagittal plane divides the cartesian working space in

two parts, which are arbitrarily called left and right. The images are then symmetrized by mir-

roring the voxels that are located on the right with respect to the mid-sagittal plane. These

symmetrical images are used as starting point for the image registration process, and will be

denoted in the following by I h and I b for the reference human and baboon subjects,

respectively.

In addition, a binary image is generated for each symmetrical image I by labelling each

voxel as foreground or background, according to its relative position with respect to the mid-

sagittal plane, i.e. on the right or on the left. As will be detailed in the upcoming “Image regis-

tration” section, these symmetrical binary images are used to enforce the symmetry of the esti-

mated transformation during registration, and will be denoted by Sh and Sb for the reference

human and baboon subjects, respectively.

Head and neck region segmentation. Only the voxels located inside the region enclosed

by the head and neck anatomical structures (and not the surrounding air) are taken into

account during registration, in order to avoid any influence of voxels that do not carry any

information about the morphological and anatomical differences across subjects. For this pur-

pose, a segmentation of the head and neck region is performed using automatic thresholding,

with a threshold value chosen slightly above the value corresponding to air (-1000 HU). Mor-

phological closing and dilation operations are applied to the resulting segmented images to fill

in holes inside the head and neck region, which essentially correspond to the oral and nasal

cavities. As such, air-tissue interfaces are preserved inside the head and neck regions only, thus

conserving information that could be valuable for the soft-tissue-based registration process.

Generating images for bone-based registration. In order to simulate, in the context of

the present study, the condition under which registration of fossil anatomical structures will

be done (i.e. the bone-based registration problem), images of the bony structures alone are gen-

erated for each subject, by artificially removing soft-tissue information from the symmetrical

images I h and I b. This is performed automatically by replacing the intensity value of all voxels

associated with soft tissue with an intensity value corresponding to air (i.e. -1000 HU). Since

voxels associated with soft tissue have lower HU intensity values than those associated with

bony structures, the latter are automatically identified by image thresholding. The hyoïd bone,

which does not fossilize, is removed manually from the images. This latter processing step

allows a more ascertained assessment of the registration performance to be expected when 3D

CT images of fossils will be used. The resulting images of the bones are depicted on the right of

Fig 3.

Image registration. Let I h : Oh 7!R; I b : Ob 7!R be the 3D CT symmetrical images of the

reference human and baboon subjects, respectively (note that I h and I b refer both to the

images with soft tissue information and to the images with bony structures alone, since the

registration procedure is the same for both). The goal of image registration is to find a trans-

formation T : Oh 7!Ob, such that I hðxÞ and the deformed I bðT ðxÞÞ are similar under a suit-

able similarity criteria, for all x 2 Oh.

Transformation model. For the non-rigid image registration procedure, the Free Form

Deformation (FFD) transformation model with B-Spline interpolation [12] is used. With this

model, the transformation of a point is given by the weighted sum of B-Spline basis functions

centered at a fixed number of control points, which are uniformly distributed throughout the

transformation domain. There are various motivations behind this choice. First, FFD is a
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parametric transformation model, which allows a drastic reduction of the number of parame-

ters to be determined during optimization, and thus, potentially increased robustness to local

minima when compared to an approach that would determine a transformation for each indi-

vidual voxel (such as diffeomorphic demons) [15]. This is specially true for the context consid-

ered in this paper, where intensity information is scarce. In addition, in comparison to other

parametric models, B-Splines have a compact support, which facilitates the optimization pro-

cedure during registration as each parameter has only a local effect on the final transformation.

Finally, in the medical imaging community, the FFD transformation model has been success-

fully used in the context of various clinical applications [11, 16], and proved to be well suited

for FE tongue mesh morphing between human subjects [9]. In the following, we refer to the

transformation model and the corresponding transformation parameters by Tm and μ,

respectively.

Cost function. The aim of the non-rigid image registration process is the estimation of a

FE tongue mesh of the baboon subject that is suitable for numerical simulations. Towards that

end, we would like the transformation Tm to respect the following criteria:

(i) Maximize the correlation of voxel intensity values between IhðxÞ and the deformed

I bðT mðxÞÞ.

(ii) Maximize the symmetry across the mid-sagittal plane of the registered images I bðTmðxÞÞ.

(iii) Minimize the distance between the registered paired anatomical landmarks.

(iv) Minimize the distortion of elements in the baboon FE tongue mesh resulting from the

whole process.

We have designed a cost function that is composed of four terms. Each one of these terms

has the objective of enforcing one of the four criteria listed above. This cost function, denoted

F , can be written as follows:

Fðm; I h; I b;Sh;Sb;Lh;LbÞ ¼ NCðm; I h; I bÞ þ a SDðm; Sh;SbÞ

þ bDðm; Lh;LbÞ þ gPðmÞ;
ð1Þ

where NC corresponds to the Normalized Cross-Correlation (NCC) similarity metric, SD cor-

responds to the Sum-of-Squared-Differences (SSD) similarity metric, D is the average euclid-

ean distance between two sets of points, P is a penalty term, and α, β, γ are the weights

associated to each term.

The criteria (i), (ii) and (iii) are naturally enforced by the first three terms in F . For the cri-

teria (iv), we chose to penalize the bending energy:

PðmÞ ¼
1

jOhj

X

x 2 Oh

jjHðT mÞjj
2

F ; ð2Þ

where HðT mÞ 2 R
3�3�3

is the Hessian matrix of T m, |Oh| denotes the number of elements in

Oh, and ||�||F denotes the Frobenius norm. The Hessian matrix HðT mÞ contains all the second

partial spatial derivatives of T m. Therefore, through P, we penalize sharp changes in local

transformation curvature, enforce smoothness of T m and minimize foldings.

In addition, to further enforce criteria (ii), the control points of the FFD T m are distributed

in alignment with the axes of I h and symmetrically with respect to the mid-sagittal plane.

Affine initialization of registration. The affine components of the transformation T m

(i.e. global translation, rotation and scaling) were computed prior non-rigid registration
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through an affine initialization process formulated as an optimization problem, with the aver-

age euclidean distance between a small subset of the available paired anatomical landmarks as

cost function. This subset of landmarks was chosen manually to capture average size change

and frontal-axis rotation of the oral cavity, and this was done using landmarks number 2, 4, 7,

20 and 21 (see “Paired anatomical landmarks”). All mentions to non-rigid registration in this

paper suppose affine-initialized data.

Assessment of registration quality. The quality of the resulting transformation T m is

evaluated in terms of the accuracy of the predicted FE baboon tongue meshes and the quality

of the elements in these meshes. Given the differences in the images considered in the process

(see “Generating images for bone-based registration”), the results of the soft-tissue-based regis-

tration and the bone-based registration processes are expected to be different. Hence, the accu-

racy of their respective FE tongue mesh predictions should be computed differently. In the

soft-tissue-based registration process, we expect the transformation T m to map two organs that

are partially visible on the 3D CT images, namely the reference human tongue and the tongue

of the baboon subject. Therefore, the accuracy of the resulting transformation T m can be com-

puted on the basis of the proximity between the predicted baboon FE tongue mesh and the

actual baboon tongue as represented in the 3D CT images. Consequently, the accuracy is cal-

culated as the average distance between points at the actual baboon tongue surface (see Fig 1

(c) and 1(d)) and the surface of the predicted FE baboon tongue mesh. In the bone-based regis-

tration process, since no information is available on the actual baboon tongue, we expect the

transformation T m to produce a FE baboon tongue mesh that is as close as possible to the

baboon tongue mesh predicted by the soft-tissue-based registration process. The accuracy is

then calculated as the average node-to-node distance between the two predicted FE baboon

tongue mesh surfaces: the better the prediction from the soft-tissue-based registration process,

the better the prediction from the bone-based registration problem.

In addition, since the predicted FE baboon tongue meshes must be suitable for numerical

simulation, the quality of their elements is also considered for the assessment of the overall

prediction quality. Importantly, we have chosen to include a measure of the quality of the

mesh elements as part of the optimized criterion that constrains the registration method. We

could have proceeded differently, and determined first an optimal tongue transformation

without constraining it by any consideration for the quality of the mesh elements before

remeshing the volume of the baboon’s tongue predicted by the registration procedure. We did

not do so, in order to preserve the internal structure of the reference tongue mesh in which

tongue muscles’ anatomical implementation has been carefully determined. In addition, our

approach avoid the time-consuming meshing procedure that would be a handicap in a context

in which several predictions may need to be generated and assessed. More specifically, in

order to preserve the high quality of the reference FE mesh of the human tongue, the predicted

FE baboon tongue meshes should be devoid of inter-element penetrations and minimize dis-

tortion of the elements. The former can be achieved by ensuring that the resulting transforma-

tions T m are diffeomorphic, i.e., invertible and differentiable [17]; the latter can be indirectly

enforced by controlling the amount of deformation. The quality of the predicted FE baboon

tongue meshes is evaluated the same way for both registration processes. We compute the

determinant of the transformation Jacobian, i.e. Jðx; mÞ ¼ detðrT mðxÞÞ, which should be

greater than zero across the transformation domain in order to ensure diffeomorphism. The

quality of the FE baboon tongue mesh predictions is assessed by computing the average of the

10% lowest J values evaluated at the voxels inside the tongue in the reference image I h to

which the transformation applies, henceforth referred to by J10%.
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These measures of the accuracy and quality of the predicted FE baboon tongue meshes are

at the basis of the evaluation of the sensitivity of the registration processes to variations in their

parameters, which leads to the selection of the best registration processes (see “Uncertainty

quantification: adaptive stochastic collocation”).

Implementation and registration parameters. The registration procedure was imple-

mented in SimpleElastix, a python interface to the open source parametric image registration

toolbox Elastix [18]. The adaptive stochastic gradient descent method is applied to minimize

the cost function F , which is estimated using 20000 points randomly sampled at each iteration

from the head and neck region (see “Head and neck region segmentation”). A multi-resolution

approach is adopted to cope with the large geometrical differences existing between the

human reference and baboon subjects. A total of 3 spatial resolutions are used, with the resolu-

tion changing from coarse to fine by a factor 2, both for the images and the FFD grid.

The choice of registration parameters is in general not straightforward, as it greatly depends

on the registration problem at hand and the expected registration accuracy. Here, we consid-

ered the alignment of the mid-sagittal planes (as assessed with the SD term), with respect to

which the meshes have to be symmetrical, to be as important as the alignment of intensity val-

ues (NC term); we therefore set the value α = 1. As for the remaining parameters, we per-

formed a series of registrations with arbitrarily chosen values and perturbations to identify the

resulting variability of qualitative registration accuracy. We obtained relatively stable registra-

tion results with the weight β for the distance term D set to 0.0, 0.05 and 0.1 for the coarsest to

the finest resolution, respectively. The weight γ of the penalty term P and the size of the FFD

grid in the finest resolution were the two parameters resulting in the largest variation in regis-

tration accuracy. The assessment of the robustness of the image registration process to varia-

tions in these two parameters is performed through a stochastic approach entitled adaptive
stochastic collocation described in the sequel. In the remaining of this paper, we will use the

notation λ = {λ1, λ2} with λ1 representing the size of the FFD grid and λ2 the weight γ of the

penalty term P, both in the finest resolution.

Uncertainty quantification: Adaptive stochastic collocation

The general aim of uncertainty quantification (UQ) is to quantify and analyze a model

response, often called output or quantity of interest (QoI), when the model parameters are

either not precisely known or are known within some probabilistic framework. The most com-

mon method to quantify uncertainties is the Monte-Carlo method. In this method, the main

idea is to set the uncertain parameters varying within some variation intervals according to a

pre-defined probability density function (pdf), for example a uniform or gaussian density dis-

tribution. Then, samples of the uncertain parameters are drawn from the uncertain parameters

space and the model output is computed for each sample. Once the process has reached con-

vergence, i.e. when increasing the number of samples the statistics on the model output are

nearly constant, we can extract stochastic information, such as measures of the variance and

mean, to assess the robustness of the model output. However, in the Monte-Carlo method

reaching the convergence is very slow and it is computationally expensive, since it requires an

important number of samples and computations of model outputs. For this reason, we decided

to use another approach based on the stochastic collocation method where the samples are not

fully randomly selected, but are chosen such that a stochastic error is minimized, as explained

hereafter. Moreover, these samples are used next to build a response surface or metamodel,
which is a continuous, interpolated surface such that one can estimate a model response as

accurately as possible.
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The adaptive stochastic collocation method on simplex elements proposed by Van Langen-

hove et al [19] is used here for the following reasons: (a) it is non-intrusive, meaning the image

registration tools are seen as a black box and no modification of the tools is required; (b) it is

an adaptive approach with a constraint on the computational cost, meaning we should get the

best possible response using a computational budget; (c) the method has been built to capture

singularities such as rare events or localized high sensitivity of the model response. The main

idea is to estimate the stochastic error on the quantity of interest by measuring the difference

between the true value of the model output and the value estimated with the metamodel using

an interpolation error on the parameter space (see below for more details). This measure of

the error is used to build an adapted simplex elements tessellation of the uncertain parameter

space, which is essentially an adapted “grid”.

Stochastic problem formulation. Let us first set some mathematical notations and frame-

work for the definition of the stochastic problem. We introduce L � Rn
the space of model

inputs λ, which we refer to as the parameters of interest or uncertain parameters. Let Q : L!

D � Rm
denote the model response map, or quantity of interest (QoI) map, from the uncertain

parameters to the space of observable model output data denoted by D � Rm
. We assume that

ðL;BL; mLÞ and ðD;BD; mDÞ are two measurable spaces on some Borel σ-algebras BL and BD

restricted to Λ and D, respectively with μΛ and μD the associated measures on these spaces.

In this work, Q(λ) is defined as the average of node-to-node distances between two FE ton-

gue meshes, one chosen as the best prediction for the soft-tissue-based registration process, and

one for the prediction of bone-based registration process, for each uncertain parameters values

λ = {λ1, λ2} with λ1 representing the size of the finest FFD grid and λ2 the weight for the penalty

term. Moreover, we denote πΛ the joint probability function (pdf) associated to parameters λ.

We assume the uncertain parameters to be independent, but not necessary identically

distributed.

Suppose a discretization or partition Hh of the parameter space Λ into simplex elements

(triangular elements here) using a finite number of samples λi = (λ1, λ2)i, 8i = 1, . . ., ns. A

response surface or metamodel is built from the model response on these samples.

Then, let Q(λi) be the exact stochastic response or exact quantity of interest. We aim to pro-

vide an estimate and minimize the following stochastic interpolation error:

Z ¼ k QðλiÞ � YhQðλiÞ kLpðLÞ; ð3Þ

where Θh is the (linear) interpolation operator in the parameter space such that ΘhQ(λi) is the

interpolated model response. For the purpose of this paper, we will focus on the L1-norm of

the interpolation error in the stochastic space. This is a purely practical choice, well adapted

for approximation of potentially discontinuous solutions, but there is no restriction in using a

different p-norm.

Since we are dealing with random quantities, we focus on minimizing the average error,

which introduces the probability density function πλ into the L1-error formulation:

�Z ¼ E½Z� ¼
Z

L

jQðλiÞ � YhQðλiÞj pL dλ: ð4Þ

We highlight here that the probability density function πλ acts as a weighting of the interpo-

lation error. The error estimate (4) will be used as a refinement indicator to drive adaptivity

over Λ, i.e. to decide the samples that should be drawn.

Solving the stochastic adaptive optimization problem. From a mathematical point of

view, we seek to solve an optimization problem where we want to find the best tessellation (i.e.
division into triangles of the Λ space) such that the stochastic error (4) is minimized under the
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constraint of a given computational budget, defined here as the number of image registration

processes we wish to use. The key idea of this method, inspired initially by physical problems,

is to define and solve the optimization problem in a continuous framework where it has math-

ematical properties, such as convexity, that ensure the existence of a solution. We will use the

continuous framework of a Riemannian metric space (RM), in which for each point (or sam-

ple) we can associate a Riemannian metric, which is a symmetrical, positive-defined matrix,

that contains information regarding the direction and length of the triangular element. This

framework is particularly well suited when the model response is highly sensitive to changes in

the uncertain parameters considered, possibly in some privileged direction.

Using the continuous framework of a Riemannian metric space and the associated continu-

ous error model, the stochastic error estimate (4) has the following representation in the Rie-

mannian metric space

EλðMÞ ¼
Z

L

trace M� 1
2ðλÞHQðλÞM

� 1
2ðλÞ

� �
dλ; ð5Þ

where

HQðλÞ ¼ pLHðQðλÞÞ; ð6Þ

with M a Riemannian metric, H(Q(λ)) the Hessian matrix of Q(λ) and the weight πΛ the

probability density function defined on Λ.

The stochastic optimization problem is then formulated as follows:

Find Mopt
λ ¼ argmin

Mλ

EλðMÞ; subject to CðMÞ ¼ Cλ; ð7Þ

where Cλ denotes a specified complexity in the parameter space, which is equivalent to the tar-

geted number of samples (or image registration processes) considered. The notation Mopt
λ

holds for the optimal metric that minimizes the expectation of the continuous interpolation

error in the parameter space. We will use this metric to build a simplex tessellation of the

parameter space, which is, roughly the “mesh” (here the “grid” nomenclature is used as a

generic term for sampling and related discretization of the parameter space) associated with Λ.

The optimal stochastic metric, solution to the n−dimensional optimization problem (7) is

Mopt
λ ¼ C

2
n
λ

Z

L

detðpLjHðQðλÞÞjÞ
1

2þndmλ

� �� 2
n

detðpLjHðQðλÞjÞ
� 1

2þnjpLHðQðλÞj ð8Þ

and the error estimate on this optimal metric is given by

Eopt
λ ðM

opt
λ Þ ¼ nC�

2
n

λ

Z

L

detðpLjHðQðλÞÞjÞ
1

2þndλ
� �2þn

n

: ð9Þ

The proofs for formulations (8) and (9) are included in [19].

Stochastic adaptive algorithm. The previously defined optimization problem is solved

iteratively and the main steps of the algorithm are outlined in Algorithm 1 described below.

Algorithm 1 Adaptive metamodel construction and statistics computation
• Given a set of Nλ,0 initial samples, {λi}0 form the initial grid Hλ;0

using a Delaunay triangulation.
• Run the image registration tool to compute Q({λi}0).
For l = 1 to nadap
▶ Compute optimal metric Mopt

λ;l and the stochastic error, solutions
of the stochastic optimization problem (7) with given cost Cλ
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based on the QoI evaluation on the (vertices of the) previous
grid Hλ;l� 1.

▶ Use (anisotropic) information provided by the metric to generate a
new grid Hλ;l containing Nλ;l ¼ Nλ;l� 1 þ N

new
λ;l samples.

▶ Use the image registration tool to compute the QoI at the Nnew
λ;l new

samples and update the metamodel Q({λ}l) using linear interpola
tion (stochastic collocation approach).

▶ If needed, compute the statistical moments of the metamodel.
EndFor
We start out by (randomly) sampling the space Λ using the probbaility density πΛ and con-

structing an initial grid as a Delaunay triangulation with samples {λi}0. Here the subscript 0

holds for the initial step, i.e. l = 0, in the iterative algorithm. The image registration tool is exe-

cuted for each of these samples (couple of uncertain parameters) and the QoI information Q

(λi) is extracted. We then solve iteratively (as a fixed-point iteration) the stochastic optimisa-

tion problem (7) which has an optimal metric as a solution. The optimal metric provides infor-

mation on the number of new samples Nnew
λ;l to be generated at each step l, as well as the

position and connection of these samples with the previous triangulation. The image registra-

tion tool is evaluated on those samples to extract QoI information and the new stochastic grid

is generated using an anisotropic grid generator tool FEFLO. We highlight here that the opti-

mal metric takes into account additional information, i.e. the probability density function πΛ.

At the end of the fixed point loop, when l = nadap, we obtain the metamodel with a computa-

tional cost controlled by the constraint.

Stochastic parameters setup for image registration. As stated before, we analyze the

robustness of the image registration method by quantifying uncertainties on the quantity of

interest Q(λ) defined as the average of node-to-node distances between two FE tongue meshes,

one chosen as the best prediction of the soft-tissue-based registration, and one as the prediction

with the bone-based registration, for each uncertain parameter in the Λ space.

We study the metamodel obtained using the adaptive simplex stochastic collocation

method on two uncertain parameters: (i) λ1 defined as the grid spacing in the finest resolution;

(ii) λ2 defined as the weight γ for the penalty term P in the cost function F defined in Eq (1).

During registration, for a given λ2 value, the γ values used are 0.0,
λ2

2
, and λ2 for each resolution,

from coarse to fine.

The probability density functions for the uncertain parameters are:

• Gaussian probability density function N ðm; sÞ with mean (or expectation) μ = 20 and stan-

dard deviation σ = 4 for the grid spacing parameter λ1 defined on the interval [8, 32] (values

expressed in millimeters).

• Uniform probability density function for the regularization weight λ2 since we lack any a pri-
ori information on how this weight impacts our registration, defined on a large domain [0,

1000].

Choice of the best predictions of the FE baboon tongue mesh. For both registration pro-

cesses, the selection of the best prediction of the FE baboon tongue mesh is based on the two

measures of registration quality that are described in “Assessment of registration quality”. Nat-

urally, we seek to choose a prediction that results in high accuracy. However, accuracy alone

would be an insufficient criterion as image registration is an ill-posed problem in general, and

it is not unlikely that predictions are highly accurate but show excessive distortions. Therefore

we use the Jacobian based measure J10% to constrain this choice. We recall that a value of one

for the determinant of the transformation Jacobian (J(x;μ) = 1) implies isochoric deformation,
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i.e. zero volume change. This could result either from the absence of deformation whatsoever,

or from pure shear deformation. Considering the use of the bending energy penalty term P
during registration, we assume that pure shear deformation remains relatively small, and thus

use J10% directly to control distortion.

Each prediction is assigned a score computed from the accuracy (as specified for each regis-

tration process separately “Assessment of registration quality”) and Jacobian measures:

score ¼ accuracy� ðJ10% � 1Þ
2
; ð10Þ

and the prediction with the lowest score is selected as the best.

Results

The uncertainty quantification procedure has enabled us to determine both for the soft-tissue-
based and the bone-based registration processes the parameter values that generated the best

FE baboon tongue meshes in terms of accuracy and quality, as defined in “Assessment of regis-

tration quality”. The results of this procedure will be presented in details in “Soft-tissue-based
registration” and “Bone-based registration”. However, at first we will focus on the main goal of

this work, which is to investigate whether relying on head and neck bone structures only, in

the absence of any information about soft tissue, is sufficient to predict a realistic geometrical

3D representation of the tongue of a baboon subject from the mesh of the tongue of a reference

human subject. To do this, we consider the best mesh obtained by the bone-based registration

process and compare it with the best mesh obtained with the soft-tissue-based registration pro-

cess, which we know from Bijar et al’s work on humans [9] achieves a satisfactory level of real-

ism by incorporating information on all the anatomical structures of the head and neck,

whether bony or soft tissue.

Quality of the FE baboon tongue mesh resulting from bone-based
registration

Fig 4 presents, for a qualitative evaluation, various 2D views of the best FE baboon tongue

mesh resulting from the bone-based registration (light blue color), superimposed to the same

views of the best baboon tongue mesh resulting from the soft-tissue-based registration (pink

color). Overall, these 2D views suggest that a strong similarity exists between the two meshes,

with differences essentially located in the velopharyngeal region and in the posterior part of

the tongue root. A quantitative evaluation of these differences is provided by the computation

of the surface-to-surface (node-to-node) distance between the two meshes. A 3D representa-

tion of this distance is given in Fig 4(c) and 4(f), in which the colored mesh represents the pre-

diction from the bone-based registration: in the largest part of the tongue mesh the distance is

smaller than 0.5 mm, and its maximal value of 3 mm is reached in a relatively small part of the

velopharyngeal region, on the sides of the tongue. This confirms and specifies the remarkable

similarity between the two meshes.

Beyond this satisfactory result, it is interesting to note that the best accuracy for the mesh

predicted by the bone-based registration is obtained in the front part of the tongue, i.e. where

the tongue is the closest to the bony structures, whereas the worse accuracy is reached in the

region that is located the furthest from these structures. The main explanation for this result

certainly lies in the role played by the anatomical landmarks, which are all located on bony

structures. Indeed, anatomical landmarks are key factors to account for large and non-homo-

thetic global alignments between structures, which are critical in the registration of organs

with large anatomical differences, as it is the case for the human and the baboon tongues. In
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the soft-tissue-based registration, the intensity gradient at the tongue-air interface in the oral

cavity is crucial to compensate for the absence of anatomical landmarks in some regions.

The characteristics of tongue bending in the velopharyngeal region, which is at the transi-

tion between the buccal and the pharyngeal parts of the vocal tract, are largely influenced by

the orientation of the head with respect to the body, which can significantly vary, indepen-

dently of any intrinsic anatomical difference, with the posture of the subject in the CT-scan.

This was not controlled in the collection of the baboon data, which were not specifically

recorded for the purpose of the current study. In this context, in the absence of bony land-

marks that inform about head orientation, a surface-to-surface distance smaller than 3 mm is a

result we can be satisfied with. More generally, the statistical characteristics of the surface-to-

surface distance between the two FE baboon tongue meshes (Mean value: 0.65 mm; standard

deviation: 0.5 mm) describe a distance that is sufficiently small for the purposes of our work.

Soft-tissue-based registration

Fig 5 depicts the results for the soft-tissue-based registration problem. A total of 280 uncertain

parameter pairs (λ1, λ2) were evaluated by the uncertainty quantification method. We obtained

for the predicted FE baboon tongue mesh an average accuracy ranging from 1.61 mm to 3.11

mm (Fig 5(a)), and an average J10% inside the tongue volume ranging from -0.41 to 0.63 (Fig 5

(b)).

The spatial distribution of registration accuracy in the uncertainty space reveals greater

uncertainty for λ1 than for λ2. In other words it is more likely to obtain poor registration

results for a poor choice of λ1 than λ2, in the range of values considered. In addition, a narrow

region from approximately λ1 = 23 mm to λ1 = 26 mm is associated with good overall accuracy,

regardless of the value for λ2. However, from the spatial distribution of J10% in the uncertainty

Fig 4. Qualitative and quantitative evaluation of FE baboon tongue mesh predicted by the bone-based registration, considering the FE

baboon tongue mesh predicted by the soft-tissue-based registration as the reference. In all views, the front is on the right. Superimposed

views of the meshes (pink: soft-tissue-based registration; blue: bone-based registration) on para-sagittal views at approximately 9 mm (a) and 4

mm (b) from the mid-sagittal plane, as well as on axial views at the upper mental spine (d) and at approximately 5 mm below the infradental (e).

Perspective (c) and top (f) views of the 3D Spatial distribution of color-coded surface-to-surface distance between the two meshes (wireframe:

soft-tissue-based registration; colored: bone-based registration).

https://doi.org/10.1371/journal.pcbi.1011808.g004
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space, it is clear that the higher the parameter λ2, the less likely it is to obtain non-smooth

transformations, demonstrating the usefulness of the penalty term P.

The best result for the soft-tissue-based registration process is chosen as described in

“Choice of the best predictions of the FE baboon tongue mesh”, and it is illustrated in Fig 5

(c)–5(g). The uncertain parameters leading to this result correspond to λ1 = 26.21 mm, λ2 =

796.74, and correspond to an accuracy of 1.61 mm and a J10% of 0.47.

Bone-based registration

Fig 6 depicts the results for the bone-based registration process. A total of 249 uncertain

parameter pairs (λ1, λ2) were evaluated by the uncertainty quantification method, resulting in

an average accuracy of the FE baboon tongue mesh and a Jacobian measure J10% inside the ton-

gue volume ranging from 1.54 mm to 7.07 mm (Fig 6(a)) and -0.24 to 0.62 (Fig 6(b)),

respectively.

The accuracy in the uncertainty space suggests approximately equal uncertainty for param-

eters λ1 and λ2, as can be observed in Fig 6. As opposed to the soft-tissue-based registration pro-

cess, in the bone-based registration process, a poor choice of λ1 is approximately equally likely

to yield poor registration results than a poor choice of λ2. This is due to a higher influence of

the penalty term P in regions where soft tissue information translate in small variations of the

NC similarity metric, thus leaving control of the transformation lonely to the remaining terms

in the cost function F .

The best registration result for the bone-based registration process corresponds to uncertain

parameters λ1 = 25.38 mm, λ2 = 844.35, leading to an accuracy of 1.54 mm and a J10% of 0.37.

Fig 5. Results for soft tissue registration problem. Uncertain parameter space with accuracy (a) and Jacobian based

measure J10% (b) evaluated at 280 uncertain parameter pairs (λ1, λ2). Superposition of the baboon’s mid-sagittal plane with

the best predicted FE tongue mesh (c) and its mid-sagittal projection (d). Top (e), lateral (f) and frontal (g) orthogonal views

of the best predicted FE tongue mesh.

https://doi.org/10.1371/journal.pcbi.1011808.g005
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It is interesting to note that these uncertain parameters are close to those resulting from the

soft-tissue-based registration.

Discussion

We have defined a method that registers 3D CT images of the head and neck region of a refer-

ence human subject with equivalent 3D CT images of a baboon, in order to extract a 3D geo-

metrical deformation field that enables the anatomical structures and organs of the human

subject to be projected into those of the baboon. Starting from a carefully designed biomechan-

ical tongue model previously developed for the reference subject and its associated FE mesh

[20], this 3D geometrical deformation field was applied to this reference mesh in order to esti-

mate a FE mesh that describes the baboon tongue morphology and is suited for numerical

simulations.

The morphological differences between a baboon and a living human in the head and neck

region are very large, and they can only be accurately taken into account by complex, non-

rigid geometrical transformations. Hence, the first aim of this work was to evaluate whether

our proposed registration method was capable of estimating such a transformation by captur-

ing the complexity of the differences in head and neck morphologies, when all anatomical

structures, both soft tissue and bones, are taken into account to design the geometrical trans-

formation field. Although there are some imperfections in the lowest posterior region of the

estimated baboon tongue shape, the results obtained with the soft-tissue-based registration, as

illustrated in Fig 5, allow us to positively answer this question. These localized imperfections

are likely due to the orientation of the baboon’s head, looking upwards, which generates in this

region of the throat a vocal-tract bending that is clearly different from the one in our reference

Fig 6. bone-based registration process. Uncertain parameter space with accuracy (a) and Jacobian based measure J10% (b)

evaluated at 280 uncertain parameter pairs (λ1, λ2). Superposition of the baboon’s mid-sagittal plane with the best predicted

FE tongue mesh (c) and its mid-sagittal projection (d). Top (e), lateral (f) and frontal (g) orthogonal views of the best

predicted FE tongue mesh.

https://doi.org/10.1371/journal.pcbi.1011808.g006
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subject. The proposed geometrical deformation results then from a compromise between land-

mark pairing and transformation regularity, but regardless, the method generates a plausible

3D mesh of a baboon tongue from the 3D mesh of a living human tongue

This work takes place in the context of our long-term project “Origins of speech”, whose aim

is to develop biomechanical models of the tongue and vocal tract of fossil hominins to quanti-

tatively assess, via FE simulations, their ability to articulate speech. As mentioned above, only

fossil data is at our disposal for the development of such biomechanical models. Our goal in

the current work was therefore to first address the question: is our proposed registration

method able to predict, to an anatomically plausible degree, the geometry of the tongue of a

baboon subject by reducing the available information to the bony structures alone? The results

obtained with the bone-based registration presented, in particular in Fig 4, show a remarkable

similarity between the tongue meshes predicted with and without taking into account soft tis-

sue. The bony structures of the head and neck regions seem to carry enough information

about the morphological differences between living humans and baboons to reasonably well

predict the tongue morphology of a baboon from the tongue morphology of a living human.

To what extent can this result be applied to the prediction of the tongue morphology of fos-

sil hominins? Knowing that we chose to evaluate our method in the context of the transforma-

tion from a living human to a baboon, which tends to maximize the morphological differences

in the head and neck region among Catarrhini primates, the Uncertainty Quantification that

was carried on for both registration methods provides insights to answer this question. As

explained in “Image registration”, the proposed registration methods involve a Transformation
Model that applies to a spatial FFD grid, whose spacing has to be specified, and an optimization

procedure aiming at minimizing a cost function, which depends on 3 parameters α, β, γ (see

Eq (1)). After a number of trials, we have observed that of these four factors determining the

method, two have a major influence on the predictions provided by the registration: the size of

the grid used in the transformation model (referred as λ1) and the weight γ of the penalty term

P in Eq (1), referred as λ2.

The results presented in Fig 6(a) show that, within the investigated ranges of the two

parameters of interest λ1 and λ2, in the bone-based registration, for a given value of λ1, the sim-

ilarity between the bone-based and the soft-tissue-based predictions tends to improve when the

weight of the penalty term λ2 increases. At first glance, it is quite a surprising result, since the

penalty term enforces the smoothness of the transformation, which is a priori not systemati-

cally compatible with a detailed approximation of the deformation. However, a more in-depth

thinking suggests that, at the level of the maximal image resolution considered in this study,

and for the type of information available in CT images, this is probably due to the fact that the

true, ideal, geometrical transformation has intrinsic smoothness properties. Given the anatom-

ical structures considered, and the relatively macroscopic level of description that we are inter-

ested in, this explanation sounds reasonable. This is an interesting feature of the

transformation, since it makes the improvement of the accuracy compatible with the require-

ment to preserve the quality of the obtained meshes, in order to make possible further FE sim-

ulations. This feature certainly applies to any kind of geometrical transformation between sub-

species of the Catarrhini primates, including between living and fossil hominins. In sum, our

results suggest that for these geometrical transformations, in particular those associating a liv-

ing human with a fossil hominin, a weight of the penalty term larger than 800 (here, and else-

where in the paper, the values for the weights α, β and γ are not normalized) ensures that the

accuracy and quality of the mesh essentially depend on the size of the grid of the transforma-

tion model.

Not surprisingly for the bone-based registration a monotone decrease of the accuracy and

of the quality is observed when the resolution of the grid of the transformation model
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decreases, i.e.λ1 increases (see Fig 6(a) and 6(b)). This is true for all the considered values of

the weight λ2 of the penalty term. However, since accuracy in the bone-based registration is

evaluated in reference to the tongue mesh predicted by the soft-tissue-based registration, which

is in turn the mesh that is evaluated with respect to the anatomical reality, it is also important

to consider the impact of λ1 on its accuracy and quality. Fig 5 shows that for this mesh, for a

given value of λ2, the influence of λ1 on quality is not systematically monotonous, but, as could

be expected, the accuracy tends to decrease when the size of the grid increases. However, it

becomes monotonous when λ2 is larger than 800 and λ1 remains within the interval [15-30]

mm. In this region of the plane (λ1, λ2) we observed also a satisfactory level of distortion as

captured by the Jacobian based measure J10%. Thus, all in all, in this region the results corre-

spond to what can generally be expected for the impact of grid resolution on the quality and

accuracy of the mesh prediction. Hence, it can certainly be extended to registration associating

the morphology of a living human’s tongue to the one of fossil hominins, which differ less

from each other than living human tongues and baboon tongues.

In this transformation the mappings between the anatomical landmarks play an important

role since they are major factors in the non-homothetical resizing and reorientation of the

head and neck regions. Our selected landmarks have been efficient, since the mapping between

the bony structures of the living human and those of the baboon is quite accurate. In the con-

text of the prediction of fossil hominin tongues, other landmarks could be added, if necessary,

to improve the accuracy of the mapping between bone structures. Importantly, in the context

of the bone-based registration, the two landmarks located on the hyoïd bone are crucial for the

prediction of the tongue morphology in the deep pharyngeal region. They indeed largely con-

tribute to define the position of the tongue root, whose posterior part is attached to the hyoïd
bone. Importantly, few hyoïd bones remain in fossil records. This absence has been at the ori-

gin of an important controversy about the height of the hyoïd bone and its influence of the

phylogenetic emergence of speech [21, 22]versus [3, 23], which is now quite resolved [5, 6].

Today, efficient and consistent estimations of the hyoïd bone position in fossil hominins are

proposed [24, 25] that enable us to estimate the position of both hyoïd bone landmarks used in

our registration method from anatomical landmarks on the skull.

In this context, the proposed bone-based registration approach has enormous potential for

the prediction of plausible biomechanical tongue models of fossil hominins from our reference

human tongue model. Nonetheless, given the lack of validation data for fossil hominins, a care-

ful evaluation of the sensitivity of the predicted tongue morphology and of its capacity to artic-

ulate speech to variations in registration inputs (e.g. estimated position of hyoïd bone) will be a

crucial step in our approach to tackle the issue of the emergence of speech in fossil humans.

Conclusion

This work, which quantitatively assessed the capacity of a registration method to predict a real-

istic morphology of a baboon tongue from the morphology of a living human’s tongue, pro-

vides strong support for our ultimate objective of designing plausible biomechanical models of

fossil hominin tongues embedded in their vocal tracts. Combined with an uncertainty quanti-

fication strategy similar to the one proposed in the current work, the use of these models will

provide a powerful framework to assess the mobility of the fossil hominin tongues in response

to muscle activations, and its sensitivity to potential inaccuracies in the estimation of crucial

anatomical and mechanical characteristics, such as the position of the hyoïd bone, the stiffness

of tongue tissue or the shape of the palate. We will then be able to go beyond the prediction

that has been made so far only on the basis of geometrical models of the tongue [6, 21, 24, 25],

which are powerful to assess how the range of variations in fossil hominin vocal tract geometry
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impacts the capacity to produce distinctive sound patterns, but are limited in their capacity to

reliably predict plausible tongue deformations, articulatory movement speed and the stability

of potential tongue postures.
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Investigation: Pablo Alvarez, Maxime Calka, Anca Belme, Yohan Payan, Pascal Perrier.

Methodology: Marouane El Mouss, Anca Belme, Yohan Payan, Pascal Perrier.

Project administration: Amélie Vialet.
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